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J. Grayson P4

Keywords: [cross-coupling]; [palladium]; [precatalysts]; [Suzuki]; [Heck]; [Negishi]; [enolate arylation]; [Buchwald-Hartwig]

Angew. Chem. Int. Ed. 2021, 60, 25151

Goo en et al. report methylnaphthyl Pd dimers as new Pd0L precursors, ideally suited for catalytic method development and preparative

organic synthesis. By simply mixing with phosphine or carbene ligands, they are in situ converted into well-defined monoligated complexes.

Their catalytic performance was benchmarked against state-of-the-art systems in challenging Buchwald–Hartwig, Heck, Suzuki and

Negishi couplings, and ketone arylations. This enabled record-setting activities, beyond that achievable by ligand optimisation alone.

New Bench-Stable & Highly Active Palladium(0) Precatalysts
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Keywords: [Suzuki-Miyaura]; [cross-coupling]; [arylation]; [heterobiaryls]; [boronic esters]; [trimethyl borate]

Anhydrous, Homogeneous Suzuki Miyaura Cross-Coupling with B(OMe)3

J. Am. Chem. Soc. 2021, 143, 13845

Denmark et al. report the use of B(OMe)3 as an additive in anhydrous, homogeneous SM couplings with challenging heteroaryl
substrates. Significant increases in yield and rate (5 180 min) were observed, with B(neop) esters being optimal for rate and solubility.

B(OMe)3 increases the solubility of heterocycles by forming borate complexes in situ, and prevents catalyst poisoning of Pd caused by
N-coordination. It also buffers the inhibitory effects of excess Me3SiOK (potassium trimethylsilanoate).

CataCXiumA-G3 (3 mol%)
Me3SiOK (1.2 equiv)

B(OMe)3 (3.0 equiv)
DME (0.2 M), 85 °C,

5 180 min

Ar
X

Ar
B

O

O

Ar

Ar

(1.0 equiv)
[X = Br, Cl]

(1.1 equiv) 19 examples,
65 94%

-Rich Nucleophiles -Deficient Nucleophiles

84%
88% 94%

89% 78%

N

N

N

Boc O

N

N

N N

N

Me

O
N

N

Me
O

t-BuO

O
N

N

Me

H2N

N

S N

N

N

N
N

Me
N

HN N

N

N

N

74%

72%

81%
76%

P
Me

NHPdMsO

CataCXiumA-G3

without

B(OMe)3

with

B(OMe)3

[-CO2Me or
-CO2Et esters
incompatible
with Me3SiOK]

Strictly anhydrous conditions for the SM reaction can minimise protodeboronation pathways with troublesome heteroaryl boronic acids,
but the problem is often the poor solubility of these compounds without aqueous base.
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Keywords: [heterobiaryls]; [sulfones]; [sulfinates]; [cross-coupling]; [aryl halides]; [palladium]

Angew. Chem. Int. Ed. 2021, 60, 22461

Examples

Base-Activated Latent Heteroaromatic Sulfinates as Nucleophilic Coupling Partners
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Willis et al. report -nitrile and -ester sulfones as base-activated, latent sulfinate reagents. Under basic conditions, they generate sulfinate
salts in situ, which then undergo efficient desulfinative cross-coupling with (hetero)aryl bromides to deliver a broad range of biaryls.

Heteroaromatic sulfinates are effective nucleophilic reagents in Pd-catalysed cross-coupling that circumvent the '2-pyridyl problem' with
2-pyridyl boronic acids. However, sulfinate salts can be challenging to purify, poorly soluble, and not always tolerant to other reactions.
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Keywords: [cross-coupling]; [Suzuki]; [biaryls]; [aryl halides]; [boronic acids]; [nickel]; [scale-up]

Goldfogel et al. from BMS report a 24-reaction screening platform for identifying Ni-catalysed SM conditions. It is designed to be directly
applicable to process scale-up by employing homogeneous reaction conditions, alongside stable and inexpensive Ni(II) precatalysts.

MeOH as an additive greatly improved reaction performance (possibly by forming more reactive Ar B(OMe)2 esters) and enabled use of
organic-soluble amine bases. Phosphine ligands always outperformed N-donor ligands, and gave far less protodeboronation.

Screening of Nickel-Catalysed Suzuki-Miyaura Conditions for Process Scale

Org. Process Res. Dev. 2022, 26, 785 [for a NiBr2-catalysed Suzuki coupling with K3PO4, see: ChemCatChem 2022, 14, e202200440]
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A

Ni-catalysed SM reactions are particularly prone to substrate inhibition, protodehalogenation, or protodeboronation (e.g., with heteroaryl
and e -poor boronic acids), and are also influenced by polar FGs more so than SM reactions with Pd.

State-of-the-art in heteroaryl couplings (Hartwig, Stradiotto) is difficult to scale due to costly, preformed Ni complexes [e.g., from Ni(cod)2].
Also, most such reactions employ carbonate or phosphate bases in organic solvents, resulting in heterogeneous reactions.
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J. Turner-Dore P8

Keywords: [heterobiaryls]; [carboxylic acids]; [boronic acids]; [arylation]; [cross-coupling]; [decarbonylative]; [palladium]

Org. Lett. 2022, 24, 1678

Examples

Szostak and Smith (Pfizer) et al. report a Pd-catalysed decarbonylative cross-coupling for the synthesis of heterobiaryls.

This method takes advantage of the wide availability of carboxylic acids, and it is compatible with carboxylic acids based on pyridines,
pyrimidines, pyrazines, and quinolines. However, no competitions with (pseudo)halide groups on the heterocycles are provided.

Decarbonylative Pd-Catalysed Suzuki Reaction for Heterobiaryl Synthesis
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Keywords: [heterobiaryls]; [reductive cross-coupling]; [multimetallic]; [aryl halides]; [aryl triflates]; [nickel]; [palladium]

J. Am. Chem. Soc. 2021, 143, 21484

Examples

Weix et al. report a reductive cross-coupling of heteroaryl bromides/chlorides with heteroaryl triflates to give heterobiaryls, using a

combination of Ni- and Pd-based catalysts. [A related Ni-only heteroaryl aryl coupling was reported by Lautens et al. (see bottom right)].

Low-yielding combinations could be rapidly optimised on 10 μmol scale with a single 96-well “Toolbox Plate” of ligands, additives, and

reductants. "ChemBeads" (reagent-coated glass beads) were used for solid additives Zn and KBr (see ACIE 2019, 58, 7987).

Heterobiaryl Synthesis via Reductive Cross-Coupling

NiBr2•glyme (5 mol%) + L1/L2 (5.5 mol%)
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ACS Catal. 2021, 11, 12785

Het

HetCl/Br

N N

N

t-Bu t-Bu

t-Bu

N

N

t-Bu

t-Bu

Het Cl

Ar Cl

Het Ar

N 86%

CO2Me

90%

CO2Me

Me
N

N

Limited to electron-poor Ar Cl (or else Ar Br must

be used)

77% of examples were benzimidazoles

30 examples

Examples

NN
H

N

CO2Me

Me

73%



Ar
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Keywords: [Heck]; [alkenylation]; [arylation]; [aryl halides]; [acrylates]; [styrenes]; [alkynes]; [photoredox]; [nickel]

Nat. Synth. 2022, 1, 565

With Acrylates & Related Alkenes (A)

Studer et al. report an -selective, Ni/photoredox-catalysed Heck-type coupling of (Het)Ar Br with acrylates (or similar Michael acceptors)
or with styrenes. Use of a sulfinate salt catalyst (or stoichiometric additive in the case of styrenes) is the key to success (see mechanism).

This overrides the intrinsic selectivity of these types of alkenes in most Heck couplings, which tend to give -arylated alkene products.

-Selective Heck-Type Coupling via Sulfonyl Radical Conjugate Addition
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The role of the B2pin2 additive for acrylate couplings is unclear, but it does not generate Ar Bpin species and seems to be a Lewis acid.
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Keywords: [cross-coupling]; [aryl halides]; [carboxylic acids]; [alkylation]; [arylation]; [photoredox]; [nickel]; [additives]

Science 2022, 376, 532

Metallaphotoredox, decarboxylative arylations frequently perform poorly with: (i) N-rich substrates, (ii) Ar Br prone to protodehalogenation,
(iii) difficult oxidative additions (e.g., e -rich Ar Br), or (iv) 1 /2 carboxylic acids that lack adjacent radical-stabilising groups (e.g., NBoc, O).

Phthalimide Additive Dramatically Improves Metallaphotoredox Decarboxylative Arylation

MacMillan et al. used a HTS approach to identify phthalimide as an additive that greatly increases reaction efficiency with many problematic
acid and aryl halide partners. This modification was tested against 384 carboxylic acids and also 384 (hetero)aryl bromides.

Unactivated carboxylic acids, many N-rich heteroarenes, and substrates bearing polar FGs (1,2-diols, aminopyridines) can now be coupled.
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Keywords: [cross-coupling]; [aryl halides]; [alkyl boronates]; [alkylation]; [arylation]; [photoredox]; [nickel]

J. Am. Chem. Soc. 2022, 144, 9997

Scope of (Hetero)aryl Partner

Maier et al. at Sanofi report a Ni-metallaphotoredox-catalysed sp2 sp3 coupling of (hetero)aryl bromides and alkyl Bpin esters utilising
morpholine as an additive. Attack of a photogenerated aminyl radical from morpholine onto the alkyl Bpin abstracts the boryl group to give
an alkyl radical. A gram-scale batch reaction in a 100 mL flask could be carried out, due to the low extinction coefficient for the PC in DMF.

sp3–sp2 Coupling of Alkyl Bpins and (Hetero)Aryl Halides via Amino Radical Transfer
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Keywords: [cross-coupling]; [aryl halides]; [alkyl boronates]; [alkylation]; [arylation]; [photoredox]; [nickel]; [flow]

Org. Lett. 2022, 24, 5663

Scope of (Hetero)aryl Partner

Simmons et al. at BMS report a Ni-metallaphotoredox-catalysed sp2 sp3 coupling of (hetero)aryl bromides and alkyl Bpin esters utilising
quinoline as a catalytic additive. Alkyl radical generation occurs from an alkyl Bpin-quinoline complex, which may proceed via a triplet-
triplet energy transfer (EnT) process. Scalable conditions for continuous flow were also developed.

sp3–sp2 Coupling of Alkyl Bpins and (Hetero)Aryl Bromides via Energy Transfer
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Keywords: [arylation]; [alkylation]; [SNAr]; [decarboxylation]; [metal-free]

Chem. Commun. 2022, 58, 7435

Examples

Gallego et al. at Pfizer report an operationally simple and functional group tolerant, two-step SNAr-decarboxylation protocol for "traceless"
formation of C(sp2) C(sp3) bonds. It can be used to build fragment libraries using parallel synthesis techniques

The enolisable nature of esters also offers increased modularity - a feature not present in carboxylic acids or alkyl halides. Thus, telescoped
alkylation-arylation sequences are possible on non- -branched alkyl esters (not shown).

SNAr-Decarboxylation for C(sp2)–C(sp3) Bond Formation

LiHMDS (2.0 equiv),
PhMe (0.5 M), rt, 1 h

(1.0 equiv) 25 examples, 31 96%
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Keywords: [methylation]; [alkylation]; [acetals]; [aryl bromides]; [nickel]; [photoredox]; [data science]; [machine learning]

Examples

Doyle et al. report a Ni/photoredox-catalysed methylation or alkylation of aryl halides with benzaldehyde di(alkyl) acetals as radical sources.

C(sp3)–C(sp2) Coupling with Acetals as Alcohol-Derived Radical Sources

33 examples, 17–95%(1.0 equiv)

J. Am. Chem. Soc. 2022, 144, 1045

Data science techniques were used to derive a diverse collection of ArBr that is representative of the chemical space of the substrate class.
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1. filter

2. featurise
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dimensions

4. cluster

e.g.

ArBr feature space

Systematic scope selection & predictive modelling

Late-stage functionalization of fenofibrate

By superimposing scope examples from published Ni/photoredox methods on this same chemical space, areas of sparse coverage and
high vs low average yields were identified, enabling comparisons between prior art and this new method
Population-wide reactivity trends for ArBr could also be quantified and sources of possible functional group incompatibility revealed with
supervised machine learning.
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Keywords: [arylation]; [alcohols]; [aryl halides]; [photoredox]; [nickel]

Nature 2021, 598, 451

MacMillan et al. report the arylation of alcohols with aryl halides using nickel metallaphotoredox catalysis. A stoichiometric azolium salt
additive serves to active the alcohol partner, generating an amide acetal intermediate as a radical precursor. The method is mild, selective
and capable of accomodating primary, secondary and tertiary alcohols, as well as aryl and heteroaryl bromides or chlorides.
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Weix et al. report a reductive arylation of 1 and 2 alcohols via a rapid in situ bromination using the (non-commercial but easy to make)

Hendrickson "POP" reagent, prior to cross-coupling. The protocol was also demonstrated to be easily applicable to HTE in a 96-well plate.

The catalyst mixture works well in MeCN, so problematic amide solvents can be avoided. Moreover, solutions of POP/Bu4N Br reagent

solution in MeCN can be stored for months outside of a glovebox. The new ligand t-BuBpyCamCN is commercially available.

Formal Cross-Electrophile Coupling of Alcohols with Aryl and Alkenyl Halides
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Examples

Rovis et al. report a deaminative arylation process from sterically-hindered primary alkylamines, using Ni-metallaphotoredox catalysis.
Prior activation of the amine via condensation with an electron-rich benzaldehyde is required, in order to generate a radical precursor.

No examples of heteroaromatic substrates as coupling partners are given, although a few N-heterocycles (e.g., pyridine, pyrazole) are
included as substituents. Enantioenriched amines will naturally lead to racemic products.

Deaminative Arylation of Sterically Hindered Primary Amines
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Sevov et al. report an electroreductive, Ni-catalysed cross-coupling of 3 (or 2 ) alkyl bromides with aryl or vinyl bromides, chlorides, and
triflates. The key advance is a combined use of two different ligands (bpp and iPrQ), with controlled generation of two discrete Ni species at
the Ni(I) (A) and Ni(0) (B) oxidation states. Complex A exclusively activates alkyl bromides, whereas B only activates Ar X species.

Expanding the Scope of Reductive C(sp3)–C(sp2) Coupling Using Electrochemistry
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Reductive cross-couplings of alkyl bromides with C(sp2) X electrophiles are currently very limited with 3 alkyl bromides (i.e., e poor Ar Br
partners only) and there are no examples whatsoever of 1 /2 /3 alkyl bromides coupling with less-activated Ar Cl or Ar OTf substrates.
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Cyclopropyl Examples

Weix et al., in collaboration with Janssen, reports the Ni-catalysed, reductive coupling of strained ring N-hydroxypthalimide (NHPI) esters
with (hetero)aryl halides. This allows cyclopropanation or bicyclopentylation of arenes, as well as installation of other strained rings (e.g.,
oxetanes, bicyclohexanes, azetidines). It is compatible with HTE (using Zn@ChemBeads) and the NPHI ester can be tuned for better yields.

Cross-Electrophile Coupling of Strained Ring Redox-Active Esters with (Hetero)aryl Halides
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The ligand t-BuBpyCamCN is commercially available, or can be made in 3 steps from dtbbpy. Using a zinc-packed bed, the reaction could
be scaled with a 45 min residence time in continuous flow.
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Examples

Doyle et al. report a Ni-metallaphotoredox-catalysed, enantioconvergent coupling of racemic styrene oxides with aryl iodides using Et3N as
the reductant. The chiral biimidazoline (BiIm) ligand is made in 4 steps (40% yield, 1 purification) from 845714-30-9 (£164/g).
The scope is mostly limited to benzenoid coupling partners, and ortho-substitution on either partner is not well tolerated.

Enantioconvergent Cross-Coupling of Styrene Oxides with Aryl Iodides
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Multivariate linear regression analysis with 29 BiIm and BiOx ligands showed that enantioselectivity correlates with ligand electronics,
with more electron-rich ligands giving higher ee's. Mechanistic studies suggest that reductive elimination is enantiodetermining.


